
On the Combination of Gamification and Crowd Computation
in Industrial Automation and Robotics Applications

Tom Bewley1 and Minas Liarokapis2

Abstract— Autonomous intelligent systems outperform hu-
man workers in an expanding range of domains, typically
those in which success is a function of speed, precision and
repeatability. However, many cognitive tasks remain beyond
the reach of automation. In this work, we propose the use
of video games to crowdsource the cognitive versatility and
creativity of human players to solve complex problems in
industrial automation and robotics applications. To do so, we
introduce a theoretical framework in which robotics problems
are embedded into video game environments and gameplay
from crowds of players is aggregated to inform robot actions.
Such a framework could enable a future of synergistic human-
machine collaboration for industrial automation, in which
members of the public not only freely offer the fruits of
their intelligent reasoning for productive use, but have fun
whilst doing so. There is also potential for significant negative
consequences surrounding safety, accountability and ethics if
great care is not taken in the implementation. Further work is
needed to explore these wider implications, as well as to develop
the technical theory behind the framework and build prototype
applications.

I. INTRODUCTION

Autonomous intelligent systems outperform human work-
ers in an expanding range of domains, typically those in
which success is a function of speed, precision and repeata-
bility, but many tasks remain beyond their reach. As humans,
we excel at solving problems requiring planning, spatial
reasoning, semantic interpretation, social collaboration and
creativity. Each of these skills is in high demand in the
robotics industry, and each is tested rigorously during video
gameplay. By way of example: in the Shakespeare Anthology
puzzle of the 2003 survival game Silent Hill 3, the goal is to
enter a four-digit code into a keypad. To obtain the numbers,
the player must discover a poem scrawled on a nearby scrap
of paper, peruse the stanzas to identify cryptic allusions to
a variety of Shakespearean plays, and follow a convoluted
series of deductions requiring an intimate knowledge of the
bards literary output. Such a feat is far beyond the capacities
of today’s artificial intelligent systems.

One could view the several hundred billion hours spent
gaming annually by the world’s 2.3 billion players [1][2]
as a vast, untapped resource of valuable intelligence. This
time is worth upwards of $2 trillion if paid with the median
US salary [3], but the gamer community actually pays to
participate in the round-the-clock exhibition of complex,

1Tom Bewley is with the Department of Computer Science, University
of Bristol, United Kingdom. Email: tom.bewley.2014@bristol.ac.uk

2Minas Liarokapis is with the New Dexterity research group, Department
of Mechanical Engineering, University of Auckland, New Zealand. Email:
minas.liarokapis@auckland.ac.nz

subtle reasoning. The legions are connected by robust, high-
speed networks, and communicate their intentions precisely
via the simple mechanisms of gaming controllers, bypassing
the need for expensive, error-prone sensors. Individually,
they are incentivised by competition to adapt and learn
from mistakes. Collectively, they provide robust, parallel
computation. Yet while developers collect gameplay statistics
for their own purposes, this perfect problem-solving storm
is otherwise entirely wasted from an economic perspective.

Could the robotics industry harness the power of gamer
intelligence to address its challenges efficiently and securely?
More specifically, is i t possible to map the salient aspects of
a robotics problem to features of a video game, analyse the
relevant in-game actions of one or more players, and rein-
terpret the most effective strategies into control instructions
for the robot itself? This would represent a novel combi-
nation of gamication, in which game mechanics are used
for productive ends, and crowdsourcing, the accumulation
of knowledge, skills and ideas from crowds of individuals
towards a single goal. Crucially, gamification s hould not
detract from the fun of gameplay. In fact, players need not
be aware that they are solving a robotics problem at all.

Numerous experimental results have attested to the effi-
cacy of crowdsourcing for solving complex reasoning prob-
lems, with the approach outperforming experts in domains
requiring significant adaptability and semantic understanding
[4]. The validity of crowdsourcing is also underpinned by
theoretical findings t hat c ollaborative c ontrol b y a diverse
ensemble of imperfect agents can be more fault-tolerant than
using any single agent [5]. However, we recognise a number
of weaknesses in past approaches to crowdsourcing for
robotics applications, relating primarily to cost-effectiveness,
privacy, scalability and ethics, which may be hampering
widespread application in industrial automation scenarios.

The primary aim of this work is to provide a high-level
description of how gamification and crowdsourcing could be
combined in a synergistic fashion to solve industrial automa-
tion and robotics problems. To facilitate further comparisons
and development of the proposed framework, we have cre-
ated a companion repository which introduces a standardised
terminology for describing crowdsourcing techniques for
robotics and related applications, through analysis and cross-
comparison of prior work. The repository also discusses the
benefits o f t he p roposed f ramework, e xample applications,
the challenges of practical implementation, and the broader
commercial and societal implications. It can be found at:

www.newdexterity.org/gamification

https://www.newdexterity.org/gamification

II. BACKGROUND AND RELATED WORK

Human computation is the technique of outsourcing cer-
tain cognitive tasks from machines to humans, to make time-
efficient and cost-efficient use of the relative abilities of
each. The computation is generally said to be crowdsourced
if multiple humans participate. Human computation has its
origins in work on interactive evolutionary computation,
pioneered by Richard Dawkins, in which user preferences
were used to guide artificial evolution algorithms in place
of fitness functions [6]. Since the advent of the internet,
which allows large groups to communicate at virtually zero
cost, applications of crowd computation have proliferated
under names such as crowdvoting to help public-facing
organisations make popular branding and strategy decisions
[7], citizen science in which members of the public assist
in data collection and analysis for scientific research [8],
and open innovation where online groups work together on
solutions to large global problems [9]. The premise in each
of these cases is that a wide diversity of thought is beneficial,
and a superior result can be obtained through the aggregation
of many ideas and opinions (in a synergistic fashion) than
from any single person acting alone - this concept is often
referred to as the wisdom of the crowd.

From the perspectives of both simplicity and commercial
applicability, some of the most elegant crowdsourcing mech-
anisms have been the games with a purpose of Luis von
Ahn [10]. These include the ESP game [11], where players
are randomly paired and shown a series of images, which
they must each independently label with a single word. The
pair receives a positive score if their labels match, hence are
incentivised to pick words that truly represent the image.
The game produces high-quality labels that can be used
to improve online image search. In another word-guessing
game, Verbosity [12], player pairs alternate between the roles
of describer and guesser. The describer is provided with a
secret word x, and must help the guesser to find it by filling
in a series of sentence templates such as “x is a kind of...”.
The describer can then rate each of the guesser’s inputs as
“hot” or “cold”, and the pair is rewarded based on guessing
speed. Over time, through the agreement of many player
pairs, the game produces a database of commonsense facts
about the secret words (e.g., dog is kind of pet).

Outside of games, von Ahn also developed a tool called
reCAPTCHA [13], which is used billions of times annually
to secure websites from bots by forcing visitors to read and
re-type obscured and distorted text. Unbeknownst to most
users, this text derives from scans of archived books, and
responses are autonomously aggregated to digitise the books
for online publication. In 2011 von Ahn founded Duolingo
[14], a free language-learning platform from which students
efforts are similarly harnessed to translate online content.

Numerous prior attempts have been made to apply crowd-
sourcing to robotic control. In the work of Goldberg et al. in
the early 2000s, crowds were provided with live video feeds
mounted on or near robotic platforms, and used keyboard
and mouse commands to dictate how they wished the robot

to move. Specific applications included moving a robot arm
over a Ouija board [15], controlling the pan, tilt and zoom
of a camera trained on a visual scene of interest [16], and
dictating the route of a mobile robot around a museum
[17]. Given that user preferences naturally differed, a major
technical challenge was the aggregation of many inputs into
a single instruction for the robot that best represented the
crowd as a whole; approaches included finding the arithmetic
mean of continuous inputs, and treating responses as votes
which could be grouped into clusters and counted to find a
majority. Other groups have employed crowdsourcing to seg-
ment 3D scenes into semantically-labelled objects, enabling
more dexterous robot grasping [18] and to teach a wheeled
robot to navigate a maze by repeated demonstration [19].

It must be noted that none of these cases used gamification
to incentivise crowd participation. In the robotics field,
the closest example has been the development of a two-
player online game called Mars Escape [20], from which
a database of player actions and instant messaging dialogues
was collected. Data from hundreds of player pairs were used
to train behavioural and language synthesis models for a
real-world robot, with the aim of enabling natural human-
robot collaboration [21]. This transfer to the real world was
identified as highly challenging, since the in-game world
needed to accurately mimic the physics and layout of the
real environment for the dataset to be applicable.

The term continuous crowdsourcing was coined by Walter
Lasecki to describe a scenario where a crowd faces a tempo-
ral sequence of tasks, as the external environment with which
they are interacting changes in real-time. Laseckis Crowds
and Machines (CROMA) laboratory at the University of
Michigan places significant focus on such continuous appli-
cations. In recent years, the lab has harnessed crowdsourcing
to remotely control software interfaces [22], caption stream-
ing audio for deaf people [23], answer natural language
queries about events in live video feeds [24], convert hand
sketches into functional user interface designs as they are still
being drawn [25], and perform on-the-fly annotation of 3D
scenes to enable more informed robot action planning [26].
In continuous crowdsourcing, planning becomes important,
posing a challenge when individuals have divergent ideas
about what should be done next. In response, CROMA has
developed a novel approach to action aggregation, in which
a single leader is periodically elected based on their historic
agreement with the crowd average and only the leader’s
actions are taken into account. This creates a greater degree
of continuity in control, allowing the leader to plan their
actions several steps in advance [22]. Leader-based control
was found to be the most robust of the options trialled by a
different group, which explored the use of crowdsourcing to
help visually impaired people navigate public spaces [27].

The majority of prior crowdsourcing efforts have not har-
nessed gamification, instead opting to pay human participants
for their time and recruit via websites such as Amazon
Mechanical Turk [28]. Various attempts have been made
to augment these platforms with intelligent task allocation
and scheduling systems to improve both speed and cost

Context

Controller

Crowd

Unified
Action

Obser-
vation

Tasks

Actions

Fig. 1. Cyclic flow of information within a generic crowd computer. A
crowd may consist of any number of human players, including just one
in the simplest case. If there is only a single player, the unified action
becomes identical to that of the player and no aggregation is required. The
controller, situated inside the context, may be another human or a purely
artificial agent. Player icon sourced from [32].

efficiency. For example, CROMA has developed Plexiglass,
an algorithm for interleaving multiple tasks into a single user
interface [29] and the lookahead approach to continuous
crowdsourcing [30], which predicts a range of states that
may be encountered several seconds into the future, and
preemptively asks the crowd to respond, enabling the system
to act in real-time when the states actually occur.

Concerns have been raised over the privacy and security
risks of crowdsourcing via semi-public platforms such as
the Mechanical Turk. Several of the papers cited in this
section have paid some attention to this issue, and suggested
task information such as images be pre-processed by adding
random noise [15], cropping [22], or deleting colour channels
[26]. A more principled approach called Crowdmask [31]
uses crowdsourcing itself to solve the privacy problem.
Members of a crowd are exposed to small segments of
images and are asked to label areas that may contain parts
of private content such as credit card numbers or human
faces. By dividing full images between many people, no one
individual ever sees truly sensitive material.

The majority of prior work on crowd computer design
has assumed that players participate through purpose-built
crowdsourcing platforms such as the Mechanical Turk and
receive a monetary reward for doing so. We believe that
there are numerous advantages to instead embedding human
computation tasks in video games, and incentivising players
through the enjoyment of gameplay itself. A detailed list of
the benefits of gamification is contained in the companion
respository that we have developed (benefits section), due to
page limit constraints.

III. A GENERIC CROWD COMPUTER

Throughout the remainder of this paper we use the term
crowd computer to mean the totality of a system that har-
nesses crowdsourced human computation to solve a problem,
encompassing all hardware and software subsystems, and

all human and artificial agents. Despite significant com-
monalities in the overall structure and workflow of past
crowd computer implementations, cross-comparison is made
difficult by the historic use of diverse application-specific
terminology, as noted in a prior review of the crowdsourcing
literature that has been conducted in [33]. In this section,
we present a generic, application-neutral crowd computer
description, using standard terms (shown in bold), which we
intend to be malleable enough to describe all prior work in
the field. The description of the cycle flow of information of
a crowd computer can be best understood with a reference
to the generic diagram presented in Fig. 1.

A crowd computer is built to solve a problem in a certain
context: some physical, social or digital system. Success
in solving the problem can be described in terms of a
performance measure to be optimised. While it is not
possible to access the complete state of the context, a partial
observation can be made. Whenever human computation
is required, a context state observation is stored in a data
structure, and pre-processed by a function called a task
mapping. This mapping outputs a set of parameters called a
task, which in turn is used to modify features of a software
environment to which one or more human participants have
access. Individually, these participants are called players1,
and the complete set of players which sees a particular task
is a crowd. Depending on the problem to be solved, a unique
task mapping function may be used for each player, resulting
in task differentiation across the crowd.

Tasks within crowd computer persist for a prescribed
interval of time, during which the role of each player is to
produce an appropriate action in response. Players synthesise
actions by interacting with a set of hardware and software
tools. During an interval, players may be able to commu-
nicate, thereby influencing each other’s actions. At the end
of the interval, player actions are recorded in a prescribed
action format, and passed through a validation step to
correct or remove obvious errors. Where the crowd consists
of multiple people, validated actions are aggregated into a
unified action through an averaging, voting, summation or
leader-election operation. The unified action can be viewed
as the crowd computer’s output, where its input is the context
state observation. The unified action is given to a human or
artificial agent situated in the context, called the controller,
who is influenced by its value but may act with a degree
of autonomy when choosing how to behave in the context.
When the controller makes a decision, it modifies the state
of the context, and thus also the performance measure.
The performance measure may be fed back to the players,
allowing them to observe whether their collective actions
were beneficial. State information may also be immediately
obtained again, and a new task synthesised, causing the
crowd computer to operate iteratively and with continuity.

1Our adoption of this term may appear to inherently favour the gam-
ification approach to crowdsourcing (“worker” is more common in the
crowdsourcing literature), but we believe it draws healthy attention to the
importance of the incentives, strategies, biases and subjective experiences
of human participants.

f Є 1:F

p Є C

t

x /100

010010110101
100010110100
101010110010
110001001001
010101101011
010111010100

v

g

m

Human Player

Action
Synthesis and

Validation

Action
Aggregation

Controller

Robot Context

Game EngineTask Mapping

Context
Observation

Performance
Evaluation

c

ã

A

R

O

TS

Fig. 2. Flow of information within a gamified crowd computer for industrial automation. Grey plates indicate a nested iteration over the variables indicated
in the bottom-right corners. Icons sourced and modified from [32].

IV. COMBINING GAMIFICATION AND CROWDSOURCING

In this section, we introduce the proposed theoretical
framework that combines gamification and crowd compu-
tation for industrial automation and robotics applications.

A. Problem Formulation

The following formulation augments the generic crowd
computer description from the previous section with several
game-specific concepts (italic), and introduces more compact
mathematical notation. We accept that it is one of many po-
tentially valid formulations; our intention is not to constrain
future work to a single narrow approach, but to provide a
basis for further discussion.

Robotics problems are inherently dynamic, meaning time
is a crucial variable. At a given time t, a robot’s context,
consisting of its physical structure and that of its environ-
ment, has a particular state St. St is not directly visible,
but an observation Ot(St) can be obtained to summarise it,
partly via the robot’s sensor equipment but potentially also
from external sources such as human operatives and technical
documents. Ot is passed into a task mapping function,
producing a set of parameters called a task Tt(Ot), which
is in turn used to define features of a video game world.
The video game is attended by one or more human players,
collectively forming a crowd C, and for each player p ∈ C
the task mapping may be unique: T (p)

t (Ot). This creates task
differentiation.

Within a single task interval {t→ t+1}, the video game
evolves over F states called frames, where F ≥ 1. At each
frame f , the game engine first creates a game visualisation
(which may include any mixture of sensory stimuli) for each
p which, in the most general case, is a function of the entire
crowd’s tasks, v(p)t,f (T

(C)
t). Players may then communicate

with each other, which can be modeled as p receiving
information c

(p)
t,f from the rest of the crowd. In tandem

with the current visualisation, communication modifies p’s
gaming policy π(p), a set of latent, idiosyncratic properties
which includes their skills, memories and ongoing plans.
p then uses the available tools (e.g. gamepad, keyboard,
mouse, touchscreen) to generate in-game behaviour known as
gameplay, which can be viewed as the output of their gaming
policy given the current visualisation: g(p)t,f = π(p)(v

(p)
t,f). The

game visualisation for the next frame is a function of the
whole crowd’s gameplay decisions.

At the end of a task interval, the encompassed history of
p’s gameplay is condensed into a prescribed action format
a
(p)
t (g

(p)
t,1:F), which may be passed through a validation

step to correct errors and remove invalid actions. Validated
actions ã(p)t from the entire crowd are aggregated into a
unified action At(ã

(C)
t). At is sent to the robot’s internal

software − the controller − which takes the value as a high-
level instruction but may act with a degree of autonomy in
choosing a particular sequence of motor commands mt(At).
Executing mt produces physical motion, thereby modifying
the state of the context for the next task interval St+1(mt)
and leading to continuity over time.

For industrial automation applications, a quantitative con-
text performance measure can generally be sought. This
measure R may not be evaluated at every task interval,
but when it is, it can be fed back into the task mapping
function, meaning that in general, tasks are functions of both
the context observation and the latest performance measure:
T

(p)
t (Ot, Rt). Giving players access to R, which may be

practically represented as an on-screen score, provides con-
text feedback and allows players to adjust their gaming
policies in response. The above formulation is represented
visually in Fig. 2 (an extended and less abstract version
of Fig. 1) which summarises the core structure of the
proposed theoretical framework. Intra-crowd communication
and measurement of context performance are added, along-

side domain-specific features such as a game engine which
generates a visualisation for each player at each frame.
It should be stressed, however, that the high-level cyclic
information flow from context to player and back via the
intermediate variables of observation, task, action and unified
action remains unchanged. This information flow is at the
core of any crowd computer.

The formulation is also summarised as pseudo-code in
Algorithm 1 that is presented below. Operations that must
be completed by bespoke crowd computation software are
represented by black imperative statements. Operations com-
pleted by human gamers or within the robot’s context are
represented by grey declarative statements. The designer of
a crowd computer would have no direct control over the latter
kind of operation.

Algorithm 1: Gamification-Based Crowd Compu-
tation for Use in Both Industrial Automation and
Robotics Applications

Robot context adopts initial state S0;
foreach t do

Observe context state Ot(St);
if context performance being evaluated then

Evaluate context performance Rt(St);
else

Rt = [];
end
Assemble crowd C;
for p ∈ C do

Map into task parameters T (p)
t (Ot, Rt);

Initialise gameplay history g(p)t,0 = [];
for f← 1 to F do

if p active on game then
Create game visualisation
v
(p)
t,f (T

(C)
t , g

(C)
t,f−1);

Player communicates c(p)t,f ;
Player updates gaming policy
∆π(p)(v

(p)
t,f , c

(p)
t,f);

Player engages in gameplay
g
(p)
t,f = π(p)(v

(p)
t,f);

else
g
(p)
t,f = [];

end
end
Condense gameplay into action a(p)t (g

(p)
t,1:F);

Validate and attempt to correct action
ã
(p)
t (a

(p)
t);

if a(p)t cannot be corrected then delete it;
end
Aggregate into unified action At(ã

(C)
t);

Controller produces motor commands mt(At);
Context state evolves St+1(mt);

end

B. Task Mapping

In the majority of prior work on crowd computation,
context state observations O have either been presented
directly to players or subject to only minor pre-processing
(e.g. cropping and filtering in the case of images, as presented
in [24]). In our formulation, however, we refer to a task map-
ping function T (p)(O,R) which applies a transformation to
O and, when available, the context performance measure R,
before embedding it in a game environment. Consideration
of this step will be crucial for the successful implementation
of crowd computers from the perspectives of both privacy
and player enjoyment. Consider a manufacturer that wishes
to build a crowd computer to assist a robot in navigating a
busy factory floor. With the context state S comprising the
robot and its immediate environment, O could be provided
by an onboard video camera and a worded instruction such
as “go to the box containing component A while avoiding
obstacles”. A typical crowd computer would show these data
directly to players, but what if the factory, and component
A in particular, contained valuable trade secrets crucial to
the manufacturer’s success? Additionally, what if the task
of locating A were so cripplingly dull that nobody would
wish to play a video game involving it? In the former case,
the operation of the crowd computer would result in severe
breaches of privacy and security, and in the latter, there
would soon be no players to make it operate at all. Task
mapping serves to rectify these issues by transforming O
and R into a task T that is less clearly connected with
the context and is more enjoyable for players. For example,
the private and uninspiring visual scene of the factory floor
may be transformed into a haunted forest in a much larger
fantasy game world. In the transformed task, the required
sequence of player actions a may be identical, but the
manner in which they are incited is far more engaging. In
the process of task mapping, significant information may be
added to decorate the game world with interesting features,
as long as these do not interfere with the task completion.
Conversely, a large portion of the information present in O
may be stripped away, leaving only a simplified, coarse-
grained representation of the underlying robotics problem.
For some applications this may be enough for the crowd
computer to remain effective.

One pertinent question is: how obscure could a task
mapping be without making the resultant game environment
entirely irrelevant to the robotic context? Would spatial
features such as the locations of objects or a robot arm’s
joint positions need to be mapped into similarly-arranged
spatial features in the game world, or could they instead
parametrise completely different structures or even the be-
haviours of in-game characters? Potentially if an equally
complex inverse mapping from gameplay g to actions a was
employed, and the two mappings were optimised in parallel,
it could be possible to recover contextually-relevant robot
control instructions regardless how indirect the isomorphism
between the context and the game is. Further work is needed
to investigate this prospect.

C. Context Physics Modelling

If for each task interval within a game-based crowd
computer, F > 1, then the video game visualisation must
be rendered over numerous frames between observations of
the context state. This fundamentally modifies the problem
from that of one-task, one-action (as in most prior work)
to a situation where the crowd’s response to each task is a
temporal sequence of gameplay. Crucially, in order for this
sequence to be applicable in the context, the internal physics
of the game must mimic the physics of the context and the
cause-effect relationships must track each other over time.
If, on the other hand, F = 1, the context state is measured
before every frame, so it can be fed immediately into the
game visualisation. In the latter case, the game engine can be
entirely ignorant of the physics of the context, representing
whatever information it receives, one frame at a time.

To illustrate this point more concretely, consider the task
of controlling a robot arm to pick up a complex object.
If only one observation of the context state (such as the
robot’s joint angles and the shape and relative position of
the object in question) were recorded at the initialisation of
the task, the video game would require a model to simulate
how the robot and object would be moved by a sequence of
player commands over a period of several seconds. Since
each player would likely input a slightly different set of
commands, the game simulation would proceed differently
for each. Alternatively, if the robots were being controlled
by a crowd in real-time, and the same state information was
observed every 40 milliseconds, a game running at 25 frames
per second could simply use the latest joint angles and object
positions to render visualisations in a completely model-free
manner. Importantly, in a model-free crowd computer, the
visualisation for every player in the crowd would show the
effects of actual robot motion as guided by the unified action,
rather than that which would have resulted from their actions
alone, so clever game mechanics would need to be developed
to ensure that a confusing dissonance between behaviour and
outcome is not experienced.

D. Feedback, Scoring and Learning

A number of prior works [22][24][26][34] have discussed
the possibility of using a crowd computer to generate a
large dataset for training a supervised machine learning
model, to which tasks may be gradually handed off once
its performance is adequate, enabling faster response times
than through continual reliance on human computation. We
endorse this bootstrapped approach to human-machine col-
laboration, but we believe that the incorporation of machine
learning into crowd computers could be far deeper, namely
to improve the system itself and optimise the utility of output
actions with respect to the context performance measure.

In a video game, players generally act to maximise their
score. While it may be desirable to simply use the context
performance measure as the game score, thereby directly
tying in-game performance to robot performance, it is un-
realistic to expect this measure to be accessible at every task
interval. An artificial score must therefore be synthesised

to incentivise gameplay that produces good performance in
the context. Successfully hand-coding a system where this
condition is met, may be an extremely challenging exercise,
especially where the task mapping is complex. Instead, we
envisage a dual usage of the context performance measure:
firstly to provide direct feedback to players when available,
and secondly to inform machine learning to optimise internal
parameters of the crowd computer − such as the task
mapping function − so that in-game performance and robot
performance become increasingly aligned over time.

This particular problem may be a good candidate for
reinforcement learning (RL) approaches. At the outermost
level, the objective of a crowd computer is to take in noisy
and incomplete context state observations O and output
appropriate actions A, while occasionally receiving perfor-
mance feedback R. This bears more than a passing resem-
blance to the typical formulation of a partially-observable
Markov decision process (POMDP), which RL is commonly
employed to solve [35]. Just as the crowd has a set of
gaming policies π(C)(g|v) one might imagine these being
subsumed by a whole-system policy Π(A|O), which adds
elements such as task mapping, action aggregation and the
in-game physics model (if F > 1), and which could be
amenable to gradual refinement given enough data. This
opens up an intriguing prospect: now that the viability of
RL for video game play has been successfully demonstrated
[36][37], could it be possible to invert the problem and
use RL for game design with the goal of inducing useful
patterns in human play? Clearly, such unconventional use
of RL would only be justified if learning Π was more
tractable than learning to control a robot directly. There
are reasonable grounds to expect this to be the case, as
learning a problem representation that is comprehensible by
highly-versatile humans intuitively seems like half the work
compared with solving the problem in full.

V. CONCLUSION

We have presented a theoretical framework for combining
gamification and crowd computation to assist robotic systems
in industrial contexts and complex robotics applications, dis-
cussing its potential benefits relatively to the more common
crowdsourcing approaches and outlining a possible techni-
cal framing of the problem. On the companion repository,
we have presented two illustrative examples of how the
framework could be implemented in practice, and we have
discussed possible benefits of the approach as well as some
of the broader commercial and societal implications.

Gamification can improve the cost-effectiveness, privacy,
scalability and ethical integrity of the crowdsourcing indus-
try, and has numerous features that make it especially suit-
able for robotics applications. If a platform can be developed
to deliver game-based crowd computation in a manner that
is secure, efficient and fair to all stakeholders, we envisage a
future of flexible, synergistic human-machine collaboration
for industrial automation, in which members of the public
not only freely offer the fruits of their intelligent reasoning
for productive use, but have fun whilst doing so.

REFERENCES

[1] Limelight Networks, “The state of online gaming,” https://www.
limelight.com/blog/state-of-online-gaming-2018/, 2018, accessed: 28
Feb 2019.

[2] Newzoo, “2018 global games market report,” 2018.
[3] Bureau of Labor Statistics, United States Department of Labor,

“Usual weekly earnings of wage and salary workers fourth quarter
2018,” https://www.bls.gov/news.release/archives/wkyeng 01172019.
htm, 2018, accessed: 28 Feb 2019.

[4] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng, “Cheap and Fast
But is it Good? Evaluating Non-Expert Annotations for Natural Lan-
guage Tasks,” Conference on Empirical Methods in Natural Language
Processing (EMNLP ’08). Association for Computational Linguistics,
Stroudsburg, PA, USA, 254-263, 2008.

[5] K. Goldberg and B. Chen, “Collaborative control of robot motion:
robustness to error,” IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 655–660, 2001.

[6] R. Dawkins, The Blind Watchmaker. Norton & Company, 1986.
[7] V. F. Araman and R. Caldentey, “Crowdvoting the timing

of new product introduction,” Jan 2016. [Online]. Available:
http://dx.doi.org/10.2139/ssrn.2723515

[8] R. Bonney, C. B. Cooper, J. Dickinson, S. Kelling, T. Phillips,
K. V. Rosenberg, and J. Shirk, “Citizen science: A developing tool
for expanding science knowledge and scientific literacy,” BioScience,
vol. 59, no. 11, pp. 977–984, 2009.

[9] K. R. Lakhani, A.-L. Fayard, N. Levina, and S. H. Pokrywa,
“OpenIDEO,” Harvard Business School Technology & Operations
Mgt. Unit, no. Case No. 612-066, Feb 2012. [Online]. Available:
https://ssrn.com/abstract=2053435

[10] L. von Ahn and L. Dabbish, “Designing games with a purpose,”
Communications of the ACM, vol. 51, no. 8, Aug 2008. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1378704.1378719

[11] L. von Ahn and L. Dabbish, “Labeling images with a computer game,”
Proceedings of the 2004 conference on Human factors in computing
systems - CHI 04, pp. 319–326, 2004.

[12] L. von Ahn, M. Kedia, and M. Blum, “Verbosity: a game for collecting
common-sense facts,” Proceedings of the SIGCHI conference on
Human Factors in computing systems - CHI 06, p. 75, 2006.

[13] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and
M. Blum, “reCAPTCHA: Human-Based Character Recognition via
Web Security Measures,” Science, vol. 321, no. 5895, pp. 1465–1468,
2008. [Online]. Available: http://science.sciencemag.org/content/321/
5895/1465

[14] “Duolingo,” https://www.duolingo.com/, accessed: 23 Aug 2018.
[15] K. Goldberg, B. Chen, R. Solomon, S. Bui, B. Farzin, J. Heitler,

D. Poon, and G. Smith, “Collaborative teleoperation via the internet,”
IEEE International Conference on Robotics and Automation, pp.
2019–2024, 2000.

[16] D. Song, A. Pashkevich, and K. Goldberg, “ShareCam part II: ap-
proximate and distributed algorithms for a collaboratively controlled
robotic Webcam,” IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1087–1093, 2003.

[17] K. Goldberg, D. Song, Y. Khor, D. Pescovitz, A. Levandowski, J. Him-
melstein, J. Shih, A. Ho, E. Paulos, and J. Donath, “Collaborative
online teleoperation with spatial dynamic voting and a human tele-
actor,” IEEE International Conference On Robotics And Automation,
pp. 1179–1184, 2002.

[18] A. Sorokin, D. Berenson, S. S. Srinivasa, and M. Hebert, “People
helping robots helping people: Crowdsourcing for grasping novel
objects,” IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 2117–2122, 2010.

[19] S. Osentoski, G. Jay, C. Crick, and O. C. Jenkins, “Crowdsourcing for
closed-loop control,” Proc. of the NIPS Workshop on Computational
Social Science and the Wisdom of Crowds, NIPS, 2010.

[20] S. Chernova, J. Orkin, and C. Breazeal, “Crowdsourcing HRI Through
Online Multiplayer Games,” AAAI Fall Symposium Series, 2010.

[21] S. Chernova, N. DePalma, and C. Breazeal, “Crowd-sourcing real-
world human-robot dialogue and teamwork through online multiplayer
games,” AI Magazine, vol. 32, no. 4, pp. 100–111, Dec 2011.

[22] W. S. Lasecki, K. I. Murray, S. White, R. C. Miller, and J. P.
Bigham, “Real-time crowd control of existing interfaces,” Proceedings
of the 24th annual ACM symposium on User interface software and
technology, pp. 23–32, 2011.

[23] W. Lasecki, C. Miller, A. Sadilek, A. Abumoussa, D. Borrello,
R. Kushalnagar, and J. Bigham, “Real-time captioning by groups of
non-experts,” Proceedings of the 25th annual ACM symposium on User
interface software and technology, pp. 23–24, 2012.

[24] G. Laput, W. S. Lasecki, J. Wiese, R. Xiao, J. P. Bigham, and
C. Harrison, “Zensors: Adaptive, rapidly deployable, human-intelligent
sensor feeds,” Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pp. 1935–1944, 2015.

[25] W. S. Lasecki, J. Kim, N. Rafter, O. Sen, J. P. Bigham, and M. S.
Bernstein, “Apparition: Crowdsourced user interfaces that come to life
as you sketch them,” Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, pp. 1925–1934, 2015.

[26] S. R. Gouravajhala, J. Yim, K. Desingh, Y. Huang, O. C. Jenkins, and
W. S. Lasecki, “Eureca: Enhanced understanding of real environments
via crowd assistance,” Sixth AAAI Conference on Human Computation
and Crowdsourcing, 2018.

[27] W. L. Khoo, G. Olmschenk, Z. Zhu, and T. Ro, “Evaluating crowd
sourced navigation for the visually impaired in a virtual environment,”
IEEE International Conference on Mobile Services, pp. 431–437,
2015.

[28] “Amazon Mechanical Turk,” https://www.mturk.com/, accessed: 23
Aug 2018.

[29] A. Rao, H. Kaur, and W. S. Lasecki, “Plexiglass: Multiplexing passive
and active tasks for more efficient crowdsourcing,” In Sixth AAAI
Conference on Human Computation and Crowdsourcing, 2018.

[30] A. Lundgard, Y. Yang, M. L. Foster, and W. S. Lasecki, “Bolt:
Instantaneous crowdsourcing via just-in-time training,” Proceedings of
the CHI Conference on Human Factors in Computing Systems, no. 2,
2018.

[31] H. Kaur, M. Gordon, Y. Yang, J. P. Bigham, J. Teevan, E. Kamar,
and W. S. Lasecki, “Crowdmask: Using crowds to preserve privacy in
crowd-powered systems via progressive filtering,” Fifth AAAI Confer-
ence on Human Computation and Crowdsourcing, 2017.

[32] “Various icons from Flaticon.com. Robot arm, computer monitor,
brain, gears, user and checkbox icons designed by Freepik. Cam-
era icon designed by Daniel Bruce. Merging arrows icon designed
by Smashicons. Gamepad icon designed by fjstudio.” https://www.
flaticon.com/, accessed: 28 Feb 2019.

[33] M. Hosseini, A. Shahri, K. Phalp, J. Taylor, and R. Ali, “Crowdsourc-
ing: A taxonomy and systematic mapping study,” Computer Science
Review, vol. 17, pp. 43–69, Aug 2015.

[34] G. R. Calegari, G. Nasi, and I. Celino, “Human computation vs. ma-
chine learning: an experimental comparison for image classification,”
Human Computation, vol. 5, no. 1, pp. 13–30, 2018.

[35] M. Spaan, Partially Observable Markov Decision Processes. in
Reinforcement Learning. Adaptation, Learning, and Optimization, vol.
12. Springer, 2012.

[36] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai,
A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel,
T. P. Lillicrap, K. Simonyan, and D. Hassabis, “Mastering chess
and shogi by self-play with a general reinforcement learning
algorithm,” CoRR, vol. abs/1712.01815, 2017. [Online]. Available:
http://arxiv.org/abs/1712.01815

[37] “OpenAI Five,” https://blog.openai.com/openai-five/, 2018, accessed:
28 Aug 2018.

